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In recent years there have appeared several experimental studies 
[1-5] which have shown that there are cases of turbulent flow with an 
asymmetric distribution of the flow velocity and in which at the point 
where the velocity derivative is zero the turbulent shear stress is not 
zero. This raises the question of the connection of the Reynolds stress 
tensor with the characteristics of the average flow. The relationships 
used in the usual mixing length theory connect the shear stress with 
the local value of the flow velocity derivative and are not consistent 
with the experimental results mentioned above. These relationships 
are based on the assumption that the mixing length is small in com- 
parison with the characteristic length of the flow. Experiment shows 
that this assumption is not justified [6]. 

Thus, turbulent diffusion refers to the case of diffusion with a large 
mean free path. In addition to the concept of "gradient diffusion, " 
there is also the concept of "bulk convection" or "integral diffusion" 
[10], which means a transfer mechanism in which the shear stress is 
not expressed in terms of the velocity gradient. The generalization 
of mixing length theory proposed in [11-14] is based on the very 
simple kinetic equation which was used for the examination of turbu- 
lent transfer problems in [8] and which is encountered in the treatment 
of transport problems in gases, neutron diffusion, and radiative energy 
transfer. 

The proposed generalization of mixing length theory employs an 
analogy with the indicated processes and permits the derivation of 
formulas which are valid for large mean free paths. In the ease of 
small mean free paths the obtained relationships lead to the relation- 
ships for diffusion in a continuous medium and, in particular, to the 
relationships of the Prandtl mixing length theory. The integral dif- 
fusion model is a phenomenological semiempirieal theory in which 
empirical constants and several hypotheses common in mixing length 
theory are used. A very generalanatysis of the expression for the 
shear stress leads to the conclusion that if the flow is asymmetric over 
a distance eomparable with the "mixing length" the points at which 
the velocity derivative and the turbulent shear stress are zero do not 
coincide [12]. Hence, it is to be hoped that the integral diffusion mod- 
el will allow treatment of the above questions, which cause difficulty 
in the case of ordinary mixing length theory. Incompressible turbulent 
flow is considered. 

1. E q u a t i o n s ,  The  h y d r o d y n a m i c  f i e l d s  a r e  d e c o m -  

p o s e d  in to  t h e i r  m e a n  v a l u e s  and p u l s a t i o n s .  The  

s t a t i s t i c a l  c h a r a c t e r i s t i c s  of t he  f i e l d s  a r e  c o n n e c t e d  

by r e l a t i o n s h i p s  o b t a i n e d  by  a v e r a g i n g  the  h y d r o d y -  

n a m i c  e q u a t i o n s  f o r  a v i s c o u s  f lu id .  F o r  an i n c o m -  

p r e s s i b l e  f l u i d  in  the  a b s e n c e  of e x t e r n a l  f o r c e s  the  

c o n t i n u i t y  and  m o t i o n  e q u a t i o n s  h a v e  the  f o r m  ( s e e  
[15], f o r  i n s t a n c e )  

Opu,/ax~ = 0 ,  (1 .1)  

d , O p  _ 0 / ~ \  0 
P -d / -Ui -~  Oz ~ - - - -  b77 \ /% - - ~  (~i; 5" (1 .2)  

R e y n o l d s '  e q u a t i o n s  c o n t a i n e d  c o m p o n e n t s  of t he  

a d d i t i o n a l  s t r e s s  t e n s o r .  F o r  new u n k n o w n  v a l u e s  of 

the  R e y n o l d s  s t r e s s e s  we  c a n  o b t a i n  e q u a t i o n s ,  p a r -  

t i c u l a r l y  the  e n e r g y  b a l a n c e  e q u a t i o n  f o r  t he  p u l s e -  

t i o n a l  m o t i o n  

0 . / Ou~ \ 
% (<pu~> -- <u~>) -- \~ o-~-,~ / ' 

E = *]~p < ~ > ,  P ~  = p < u ~ > ,  

0 .3)  

The  s y m b o l  < ) d e n o t e s  a v e r a g i n g ,  o-ij ~ i s  t h e  

v i s c o u s  s t r e s s  t e n s o r ,  gij i s  the  v i s c o u s  s t r e s s  t e n s o r  

f o r  p u l s a t i o n a l  c o m p o n e n t s  of the  v e l o c i t y ,  Pc43 i s  the  

a d d i t i o n a l  s t r e s s  t e n s o r ,  and qo~ i s  the  e n e r g y  f lux  

d e n s i t y  of the  p u l s a t i o n a l  m o t i o n .  The  o b t a i n e d  s y s t e m  

i s  o p e n ,  s i n c e  the  v a l u e s  of t h e  a d d i t i o n a l  s t r e s s e s  
a r e  no t  e x p r e s s e d  in t e r m s  of a v e r a g e d  c h a r a c t e r i s t i c s  

of the  h y d r o d y n a m i c  f i e l d  and the  n u m b e r  of  u n k n o w n s  

e x c e e d s  t h e  n u m b e r  of  e q u a t i o n s .  

If we  c o m p l e t e l y  n e g l e c t  m o l e c u l a r  m o t i o n  we  a r e  

l e f t  w i t h  e q u a t i o n s  c h a r a c t e r i z i n g  the  p u l s a t i o n a l  t u r -  
b u l e n t  f l ow 

&~ p ~ - U ~ +  ~ - -  

d o o U -Ti-E + ~ q , - ~  P~,~ ~ ~ = 0 .  (1 .4)  

A comparison of the system of equations (1.4) descdhing the pul- 
sational turbulent flow with the system of equations describing the 
motion of a gas [10] reveals their complete external analogy. The 
velocity of the turbulent flow pulsations can be compared with the 
relative velocity of thermal motion of the moIecules. The system of 
equations describing the motion of a gas is closed by establishment of 
a relationship between the stress tensor and the energy flux density 
vector and the characteristics of the mean motion after determination 
of the distribution function. We can suggest that some of the methods 
developed in the kinetic theory of gases can be used to construct the 
turbulent stress tensor. 

Below we describe an approach to the derivation of relationships 
for the additional stress tensor and tire energy flux density of pulsa- 
tional motion in the phenomenological theory of turbulent trausport. 
In [11-14] a model of turbulent transport was constructed on the basis 
of physical arguments and by analogy with radiative energy transfer 
and neutron transport, making direct use of the macroscopic flow 
characteristics. The transport model constructed below is based on 
the use of a distribution function which satisfies a kinetic equation of 
simple form. This equation has been discussed and used in many 
problems feinting to the flow of a rarefied gas [18-21]. The system 
of equations of turbulent motion of the liquid (1. 1), (1. 2), and (1.3), 
however, is still open. 

2o D e s c r i p t i o n  of t r a n s p o r t  m o d e l .  An i d e a  of t h e  

p r o c e s s  of t u r b u l e n t  t r a n s p o r t  c a n  be  o b t a i n e d  wi th  the  

aid of a r o u g h  s c h e m e .  We a s s u m e  tha t  at  e a c h  po in t  
in  the  f l ow the  s i z e  of  t he  f o r m a t i o n s  i n v o l v e d  in 
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pu l sa t iona l  mot ion  ("moles")  is  a c h a r a c t e r i s t i c  
quant i ty  and as a c h a r a c t e r i s t i c  of the r a t e  of t u r b u -  
lent  mix ing  of the "moles"  with the su r round ing  m e -  
d ium we can in t roduce  a quant i ty  analogous to the 
m e a n  f ree  path --  the "mixing length." 

We a s s u m e  that the ve loc i ty  d i s t r i b u t i o n  of the 
pu l sa t ions  can be c h a r a c t e r i z e d  by a d i s t r i bu t i on  
funct ion  f ,  sa t i s fy ing  the r e l axa t i on  equat ion,  which 
in  the s t e a d y - s t a t e  case  has the f o r m  [20] 

csOf / Os : A (]o - -  ]). (2.1) 

The f i r s t  t e r m  on the r igh t  s ide c h a r a c t e r i z e s  the 
c r e a t i o n  of moles  at some point  in the flow. The v e -  
loc i ty  d i s t r i bu t ion  of these  moles  is a s sumed  to be 

no rma l ,  

/o- -  P 

This  c o r r e s p o n d s  to the a s sumpt ion  of local  t h e r -  
modynamie  e q u i l i b r i u m  in  the t r e a t m e n t  of r ad ia t ive  
e n e r g y  t r a n s f e r .  The p a r a m e t e r  h c h a r a c t e r i z e s  the 
ene rgy  of pu l sa t iona l  mot ion  at this  point  

h=2/8 <C 2> =4 /~E/p ,  

where  C is the veloci ty  of t rue  mot ion in a coordinate  
s y s t e m  moving  with the m e a n  ve loc i ty  of the flow. 

Equat ion (2. 1) can be in tegra ted  along the d i r ec t ion  
s and for  an inf ini te  flow we obtain  

u 

s; 

$ 
c = ~ A d s  �9 (o, 

0 
(2.2) 

Here  s is  the d i s tance  along the r ay  f r o m  the point 
M0, f ( M  0) is  the d i r ec t ion  funct ion  at the point M0.The 
d i s t r i b u t i o n  funct ion,  which c h a r a c t e r i z e s  all  the t u r -  
bu len t  pu l sa t ions  of ve loc i ty  in  the v ic in i ty  of a point  
in  the flow, is  not a n  e q u i l i b r i u m  funct ion and wil l  
tend to an e q u i l i b r i u m  value  only when the mix ing  

length tends to zero.  
By us ing  e x p r e s s i o n  (2.2) we can obta in  f o r m u l a s  

for  the components  of the t u rbu l en t  s t r e s s  t enso r  Pij 
and the e n e r g y  flux dens i ty  of pu l sa t iona l  mot ion  qi 

Pij  (Mo) = 

= I [c~-- U~ (Mo)l [cj-- Uj(Mo)] [ (Mo)  d%d%dc~, 

q~ (Mo) = 2 1  [ci - -  U, (Mo)])< 

x [ c~ - -  Uk (Mo) l ~ / (Mo) dc~ dc u dc~ (2.3) 

( summat ion  is  p e r f o r m e d  accord ing  to the double 

indices) .  
The use of these expressions, which should presumably be valid in 

the general case, entails awkward calculations. 
By introducing a number of simplifications we can obtain the ex- 

pressions derived previously in the cited works. Firstly, we assume 

that the difference in the mean velocity at two points in the flow 
which still have a considerable effect on one another is sinai1 in 
relation to the mean velocity of pulsational motion. This restriction 
is not always fulfilled with the required strictness. For instance, in 
the layer of constant shear stress, where a logarithmic law is valid 
for the profile of the mean velocity, estimates show that this ratio 
is appro~dmately 0.2 at a distance of one length, and 0.6 at a dis- 
tanee of four lengths. Secondly, the expression for the coefficient 
characterizing the rate of turbulent mixing of the moIes with the 
surrounding medium is assumed to depend only on the coordinate A(s). 
Qualitatively this hypothesis does not introduce any changes. The 
quantitative error will presumably lie within the limits of validity of 
the other hypotheses, particularly since the obtained expressions con- 
tain empirical coefficients. The second simplification is similar to 
the introduction of a mean absorption coefficient in problems of ra- 
diative energy transfer. When the absorption coefficient does not 
vary too greatly the numerical error is smaller. More accuracy can 
be obtained by introducing division into several intervals in the in- 
tegration with respect to c. The value of A will be determined from 
additional considerations. 

It i s  wor thwhi le  as a f i r s t  approx imat ion  to use  
s i m p l e r  e x p r e s s i o n s  in the ca lcu la t ions .  This  allows 
a qual i ta t ive  a s s e s s m e n t  of the su i tab i l i ty  of the ob-  
ta ined  approximat ion .  We can also hope for  s a t i s f a c -  
tory  quant i ta t ive  r e s u l t s  in view of the fact  that 
P r a n d t l ' s  mix ing  length theory,  which en ta i l s  even 
m o r e  r e s t r i c t i o n s ,  gives s a t i s f ac to ry  r e s u l t s  in  the 
t r e a t m e n t  of tu rbu len t  t r a n s f e r  in  many  cases .  

Af te r  s impl i f i ca t ions  we obtain the fol lowing ex-  
p r e s s i o n  for  the addi t ional  s t r e s s :  

4~ 0 0 

oo r 

4~ 0 0 

•  (0, s; A) ~-~s d~ (A = c / A ) ,  (2.4) 

oo co 
l 

qi = T I I if p (gh)-~/~CiCa• 
4,'r 0 0 

• T2 s; 

(Ck = ck-- U~). (2.5) 

8. Value of shear  s t r e s s .  F r o m  e x p r e s s i o n  (2.4) 
we obtain (the y - a x i s  is  d i rec ted  upward,  angle 0 is 
m e a s u r e d  f r o m  the posi t ive  d i r ec t ion  of the y -ax i s ,  
angle ~ is  m e a s u r e d  f r o m  the posi t ive  d i r ec t i on  of the 
x - a x i s  in the xz-p lane) ,  with C k = - C  cos(s,  Xk) 

I i COS(8 ,  X~)COS(S ,  Xj)  X P~j = 
4,': 0 

x II (0, s; A) ~ d~,  d~ = sin 0 dO dT. (3.1) 

We cons ide r  the l imi t ing  case  of s m a l l  mixing  iength 
A. The quant i t ies  h(s) and AUk(S) = Uk(S) - Uk(O) can 
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be expanded in a s e r i e s  in s and,  keep ing  t e r m s  of 
the o r d e r  of s ,  we obta in  

p ~OUx 4 - - / , - , ,  _ 2 h% 

P ~ : ~ = - - ( O U ~ / O y - I - O U v / O x ) ~ ] ~ , O A < C >  ere, (3.2)  

i. e . ,  in the c a s e  of a s m a l l  m i x i n g  length  we ob ta in  
the u sua l  r e l a t i o n s h i p s  which a r e  va l id  f o r  s m a l l  m e a n  
f r e e  pa th  in a m e d i u m  of cons t an t  dens i t y ,  which l e a d s  
to the r e l a t i o n s h i p s  of P r a n d t U s  m i x i n g  length  t heo ry .  

In the c a s e  of an a r b i t r a r y  va lue  of A the t u rbu len t  
s h e a r  s t r e s s  i s  d e s c r i b e d  by e x p r e s s i o n  (3 .1) ,  which 
we f u r t h e r  s i m p l i f y  for  the c a s e  of p lane  f low (AUy = 
= AUz = 0). In th i s  c a s e  the  e x p r e s s i o n  fo r  Pxy  wi l l  be 
of i n t e r e s t ,  

P~ (Y) = -- I pAu <c> {E~ (~ (y, ~; A)) -- 
Y 

a~ 
- E~ (~ (y, ~; A))} 7 -  + 

Y 

.~ ,oAu <c> {E~ (~ (~, y; A)) -- + 
- - c o  

- - E ,  (~(~, y; A))}~--- ~ (3.3) 

H e r e  E 2 and E 4 a r e  i n t e g r o e x p o n e n t i a l  func t ions .  
We can  ob ta in  an even s i m p l e r  e x p r e s s i o n  fo r  the 

t u rbu len t  s h e a r  s t r e s s ,  which r e t a i n s  a l l  the q u a l i -  
t a t ive  f e a t u r e s ,  if we use  the  m e a n - c o s i n e  a p p r o x i -  
m a t i o n  (< cos  0 } = 2 /3)  

c o  

(Y) = - @ -I ,oAu < c;  n (y L) d~ - Z - + .  
Y 

Y 

+ - v  5 p,su <c> n (:, y; L) 
f, 

(3. 4) 
- - co  

F o r  c a s e s  in which t h e r e  is no s t r o n g  a s y m m e t r y  in 
the f low Buleev [11] i n t roduced  an " i n t e g r a l  d i f fus ion  
coe f f i c i en t "  a p p r o x i m a t i o n .  In e x p r e s s i o n  (3.3) the 
v e l o c i t y  d i f f e r e n c e  AU i s  expanded  in a s e r i e s  and then 

P~u = - -  p e OU / Og , 

e = T <C> I t  - -  Y ] exp - -  -L--" (3.5)  
- - c o  

The use of this model gives results which agree satisfactorily with 
the results of mixing length theory for flows in a boundary layer, a 
plane channel,  and a tube [11,14], and also enables the t reatment  
of severn! problems of flow in a tube [11], and a plane turbulent 
Couette flow [14], which cannot be satisfactorily solved by the  usual 
mixing length theory without a special choice of constants. 

If the mix ing  length i s  s m a l l  in c o m p a r i s o n  with  the 
length in which t h e r e  is  an a p p r e c i a b l e  change  of (C), 
then 

P:cu = - -  ~/,z ,O <C}L OU / ag .  (3.6) 

4. E n e r g y  f lux  dens i t y  of p u l s a t i o n a l  mot ion .  F r o m  
e x p r e s s i o n  (2.5)  fo r  a p lane  l a y e r  we  obta in  

~ ph ~1~ ~ , d~ , 

y 

d~ 
Ph'/---~ E~ (v (~, y; A)) -X-" (4.1) 

+ co t ~  

In the m e a n - c o s i n e  a p p r o x i m a t i o n  we obta in  the 
e x p r e s s i o n  

i 9h U~ d<. qu(y)  ~ - -  ~ - ~ I I ( y ,  ~; L) ~ - +  

Y 

+ 2 ~  II (~, y; L) -L-- (4.2)  

which in the l i m i t i n g  c a s e  of s m a l l  m ix ing  length t a k e s  
the f o r m  

qy ~ .  - -  3/s p <C>L Oh / Og. (4.3) 

5. Shear s~ess in asymmetr ic  flow. At the beginning of this paper 
we referred to studies in which the structure of an asymmetric  flow 
had been investigated. Papor [5], for instance, dealt with the problem 
of mixing of two parallel streams flowing initially in separate plane 
channels at different velocities and then flowing together into a 
channel  without a dividing partition. If we consider a plane passing 
through a point N at which 0U/0y = 0, we find that as a result of 
asymmetry of the distribution of flow velocity and mean-square  value 
of the puisational velocity relative to this plane the value of the 
turbulent shear stress is not zero at the point N. The coordinate of the 
point at which the velocity derivative is zero is shifted systematically 
relative to the point where the shear stress is zero towards greater 
intensity of turbulence. This casts doubt on the hypothesis adopted 
hitherto in the semiempir ica l  mixing length theory, v iz . ,  that the 
additional stress tensor is connected with the flow parameters by an 
expression of the form of (3.2). 

The integral diffusion method enables us to describe this result [12]. 
If at a distance of several mixing lengths from the ptane passing 
through point N, the  distribution of the velocity field and sources of 
creation of turbulent pulsations are asymmetric ,  the shear stress will 
not be zero and the point where Pxy = 0 wilt be shifted towards sources 
of weaker intensity. This fundamental  possibility, inherent to the 
integral diffusion method,  provides a basis for its application to the 
calculat ion of a flow of the considered type. If a satisfactory agree- 
ment  between calculat ion and experiment  is obtained, this will be 
confirmation of the validity of the main hypotheses on which the 
integral diffusion theory is based. 

6. S y s t e m  of equa t ions  in b o u n d a r y - l a y e r  a p p r o x -  
ima t ion .  F o r  a b o u n d a r y - l a y e r  f low in which t r a n s -  
p o r t  is  a c r o s s  the d i r e c t i o n  of f low we can  use  the 
r e l a t i o n s h i p s  ob ta ined  f o r  p lane  flow. Then the s y s t e m  
of equa t ions  has  the f o r m  

OpUx OPUv --  0 

+ o ( I  <puv)) 
\ ~2- <'OCt%> + = 

i 0 2 3 \ / / O u ~  ~2\  \ OU x 

c o  

. -  - U +  

OUx T OUx 
,OU~-~:-_,,.~ + puv-b~y = 

dp (9 02Ux 
- dx 0y (,O <u~uy>) + ~ ~ ,  , 

o ' 3  - o / 3  (T h) +`ov  w 

'O < u~uy > - 
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Y 

4 hVffi 

---•  <pCsuv> ff Ph'/' II d; (y, ~; L) -+- 
Y 

J ph ~/2 a; 
§ - ~  II (~, y; L) -L-'" 

- - c o  

As regards the terms <puy> ~<(~uj/~xi)Z>, and the quantity L 
we must make certain assumptions. The equations of the energy of 
puisafional motion were analyzed in [22-27], where either approxi- 
mate equations were proposed, or dimensionality arguments were 
used. In particular, the expression proposed in [25] was 

Ix <(Ouj / Oxi)% ~ k~th / L 2 ~ kaph % / L .  

Here k~ and k s are empirical constants. 
Equations [22, 25] or experimental relationships have been proposed 

for the determination of the mixing length. For developed flow in a 
channel of constant cross section Obukhov [28] gave relationships for 
L which are satisfaetot T in many eases. In connection with the integral 
diffusion method it is of interest to note that in [28] the treatment 
involved an internal geometry in which the element was similar to the 
"optical thietmess" element ds/L in the integrhl diffusion method. 
Since the probability of interaction does not depend on the geometric 
coordinate, but on the value of ~ (0, s; L), which is different along 
rays in different directions, then anisotropy appears in the integral 
diffusion model, as in the internal geometry case. 
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