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In recent years there have appeared several experimental studies
{1~5] which have shown that there are cases of turbulent flow with an
asymmetric distribution of the flow velocity and in which at the point
where the velocity derivative is zero the turbulent shear stress is not
zero, This raises the question of the connection of the Reynolds stress
tensor with the characteristics of the average flow. The relationships
used in the usual mixing length theory connect the shear siress with
the local value of the flow velocity derivative and are not consistent
with the experimental results mentioned above, These relationships
are based on the assumption that the mixing length is small in com-
parison with the characteristic length of the flow, Experiment shows
that this assumption is not justified [6].

Thus, turbulent diffusion refers to the case of diffusion with a large
mean free path. In addition to the concept of "gradient diffusion, "
there is also the concept of "bulk convection” or "integral diffusion™
[10], which means a transfer mechanism in which the shear stress is
not expressed in terms of the velocity gradient, The generalization

of mixing length theory proposed in [11-14] is based on the very
simple kinetic equation which was used for the examination of turbu-
lent transfer problems in [8] and which is encountered in the treatment
of transport problems in gases, neutron diffusion, and radiative energy
transfer,

The proposed generalization of mixing length theory employs an
analogy with the indicated processes and permits the derivation of
formulas which are valid for large mean free paths, In the case of
small mean free paths the obtained relationships lead to the relation~
ships for diffusion in a continuous medium and, in particular, to the
relationships of the Prandtl mixing length theory. The integral dif-
fusion model is a phenomenological semiempirical theory in which
empirical constants and several hypotheses common in mixing length
theory are used. A very general analysis of the expression for the
shear stress leads to the conclusion that if the flow is asymmetric over
a distance comparable with the "mixing length” the points at which
the velocity derivative and the turbulent shear stress are zero do not
coincide [12], Hence, it is to be hoped that the integral diffusion mod-
el will allow treatment of the above questions, which cause difficulty
in the case of ordinary mixing length theory. Incompressible turbulent
flow is considered,

1. Equations. The hydrodynamic fields are decom-
posed into their mean values and pulsations. The
statistical characteristics of the fields are connected
by relationships obtained by averaging the hydrody~
namic equations for a viscous fluid. For an incom-
pressible fluid in the absence of external forces the
continuity and motion equations have the form (see
[15], for instance)
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Reynolds' equations contained components of the
additional stress tensor. For new unknown values of
the Reynolds stresses we can obtain equations, par-
ticularly the energy balance equation for the pulsa-

tional motion
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The symbol { ) denotes averaging, 3j° is the
viscous stress tensor, oy; is the viscous stresstensor
for pulsational components of the velocity, Pop is the
additional stress tensor, and q, is the energy flux
density of the pulsational motion. The obtained system
is open, since the values of the additional stresses
are not expressed in terms of averaged characteristics
of the hydrodynamic field and the number of unknowns
exceeds the number of equations.

If we completely neglect molecular motion we are
left with equations characterizing the pulsational tur-
bulent flow
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A comparison of the system of equations (1,4) describing the pul-
sational turbulent flow with the system of equations describing the
motion of a gas [10] reveals their complete external analogy. The
velocity of the turbulent flow pulsations can be compared with the
relative velocity of thermal motion of the molecules. The system of
equations describing the motion of a gas is closed by establishment of
a relationship between the stress tensor and the energy flux density
vector and the characteristics of the mean motion after determination
of the distzibution function. We can suggest that some of the methods
developed in the kinetic theory of gases can be used to construct the
turbulent stress tensor,

Below we describe an approach to the derivation of relationships
for the additional stress tensor and the energy flux density of pulsa-
tional motion in the phenomenological theory of turbulent transport,
In [11~14] 2 model of turbulent transport was constructed on the basis
of physical arguments and by analogy with radiative energy transfer
and neutron transport, making direct use of the macroscopic flow
characteristics. The transport model constructed below is based on
the use of a distribution function which satisfies a kinetic equation of
simple form. This equation has been discussed and used in many
problems relating to the flow of a rarefied gas [18~21]. The system
of equations of turbulent motion of the liquid (1, 1), (1.2), and (1, 3),
however, is still open.

2. Description of transport model. An idea of the
process of turbulent transport can be obtained with the
aid of a rough scheme. We assume that at each point
in the flow the size of the formations involved in
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pulsational motion ("moles") is a characteristic
quantity and as a characteristic of the rate of turbu-
lent mixing of the "moles" with the surrounding me-
dium we can introduce a quantity analogous to the
mean free path — the "mixing length."

We assume that the velocity distribution of the
pulsations can be characterized by a distribution
function f, satisfying the relaxation equation, which
in the steady-state case has the form {20]

¢0f [ 0s = A (fo — 1)

The first term on the right side characterizes the
creation of moles at some point in the flow. The ve-
locity distribution of these moles is assumed to be
normal,
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This corresponds to the assumption of local ther-
modynamic equilibrium in the treatment of radiative
energy transfer. The parameter h characterizes the
energy of pulsational motion at this point

ho=2 (C =*5E/p,

where C is the velocity of true motion in a coordinate
system moving with the mean velocity of the flow.

Equation (2. 1) can be integrated along the direction
s and for an infinite flow we obtain
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Here s is the distance along the ray from the point
M, (M) is the direction function at the point My.The
distribution function, which characterizes all the tur-
bulent pulsations of velocity in the vicinity of a point
in the flow, is not an equilibrium function and will
tend to an equilibrium value only when the mixing
length tends to zero.

By using expression (2. 2) we can obtain formulas
for the components of the turbulent stress tensor Pij
and the energy flux density of pulsational motion g
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(summation is performed according to the double
indices).

The use of these expressions, which should presumably be valid in
the general case, entails awkward calculations.

By introducing a number of simplifications we can obtain the ex~
pressions derived previously in the cited works, Fistly, we assume

that the difference in the mean velocity at two points in the flow
which still have a considerable effect on one another is small in
relation to the mean velocity of pulsational motion, This restriction
is not always fulfilled with the required strictness. For instance, in
the layer of constant shear stress, where a logarithmic law is valid
for the profile of the mean velocity, estimates show that this ratio

is approximately 0.2 at a distance of one length, and 0.6 at a dis-
tance of four lengths, Secondly, the expression for the coefficient
characterizing the rate of turbulent mixing of the moles with the
swrounding medium is assumed to depend only on the coordinate A(s).
Qualitatively this hypothesis does not introduce any changes. The
quantitative error will presumably lie within the limits of validity of
the other hypotheses, particulatly since the obtained expressions con-
tain empirical coefficients, The second simplification is similar to
the introduction of a mean absorption coefficient in problems of ra-
diative energy transfer., When the absorption coefficient does not
vary too greatly the numerical error is smaller, More accuracy can
be obtained by introducing division into several intervals in the in-
tegration with respect to ¢, The value of A will be determined from
additional considerations.

It is worthwhile as a first approximation to use
simpler expressions in the calculations. This allows
a qualitative assessment of the suitability of the ob-
tained approximation. We can also hope for satisfac-
tory quantitative results in view of the fact that
Prandtl's mixing length theory, which entails even
more restrictions, gives satisfactory results in the
treatment of turbulent transfer in many cases.

After simplifications we obtain the following ex-
pression for the additional stress:
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8. Value of shear stress. From expression (2. 4)
we obtain (the y-axis is directed upward, angle 6 is
measured from the positive direction of the y-axis,
angle ¢ is measured from the positive direction of the
x-~axis in the xz-plane), with Cx = —C cos(s, Xk)
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We consider the limiting case of small mixing length
A. The quantities h(s) and AUp(s) = Ug{s) — U(0) can
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be expanded in a series in s and, keeping terms of
the order of s, we obtain
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i.e., in the case of a small mixing length we obtain
the usual relationships which are valid for small mean
free path in a medium of constant density, which leads
to the relationships of Prandtl's mixing length theory.
In the case of an arbitrary value of A the turbulent
shear stress is described by expression (3. 1), which
we further simplify for the case of plane flow (AU
= AUy = 0). In this case the expression for Pxy will be
of interest ,
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Here E; and E; are integroexponential functions.
We can obtain an even simpler expression for the

turbulent shear stress, which retains all the quali-

tative features, if we use the mean-cosine approxi-

mation ({cos 8) = 2/3)
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For cases in which there is no strong asymmetry in
the flow Buleev [11] introduced an "integral diffusion
coefficient” approximation. In expression (3. 3) the
velocity difference AU isexpanded in a series and then
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The use of this model gives results which agree satisfactorily with
the results of mixing length theory for flows in a boundary layer, a
plane chanrel, and a tube [11, 14], and also enables the treatment
of several problems of flow in a tube [11], and a plane turbulent
Couette flow [14], which cannot be satisfactorily solved by the usual
mixing length theory without a special choice of constants.

If the mixing length is small in comparison with the
length in which there is an appreciable change of {C),
then

Pry = —yp <CYL U | 8y (3.6)

4, Energy flux density of pulsational motion. From
expression (2.5) for a plane layer we obtain
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In the mean-cosine approximation we obtain the
expression
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which in the limiting case of small mixing length takes
the form

Gy ~ — %5 p<CYL 0k [ By- (4. 3)

8. Shear stress In asymmetric flow, At the beginning of this paper
we referred to studies in which the structure of an asymmetric flow
had been investigated, Paper [5], for instance, dealt with the problem
of mixing of two parallel streams flowing initially in separate plane
channels at different velocities and then flowing together into a
channel without a dividing partition. If we consider a plane passing
through a point N at which 8U/0y = 0, we find that as a result of
asymmetry of the distribution of flow velocity and mean-square value
of the pulsational velocity relative to this plane the value of the
turbulent shear stress is not zero at the point N, The coordinate of the
point at which the velocity derivative is zero is shifted systematically
relative to the point where the shear stress is zero towards greater
intensity of twbulence, This casts doubt on the hypothesis adopted
hitherto in the semiempirical mixing length theory, viz., that the
additional stress tensor is connected with the flow parameters by an
expression of the form of (8, 2).

The integral diffusion method enabies us to describe this result [12].
If at a distance of several mixing lengths from the plane passing
through point N, the distribution of the velocity field and sources of
creation of twbulent pulsations are asymmetric, the shear stress will
not be zero and the point where Py, = 0 will be shifted towards sources
of weaker intensity, This fundamental possibility, inherent to the
mtegral diffusion method, provides a basis for its application to the
calculation of a flow of the considered type. If a satisfactory agree-
ment between calculation and experiment is obtained, this will be
confirmation of the validity of the main hypotheses on which the
integral diffusion theory is based,

6. System of equations in boundary-layer approxv
imation. For a boundary-layer flow in which trans-
port is across the direction of flow we can use the
relationships obtained for plane flow., Then the system
of equations has the form
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As regards the terms <puy> #((auj/ﬁxi)2>, and the quantity L
we must make certain assumptions, The equations of the energy of
pulsational motion were analyzed in [22-27], where either approxi-
mate equations were proposed, or dimensionality arguments were
used. In particular, the expression proposed in [25] was

I <(Buj { azi)2> o~ kzp,h/L_Z -+ k;;ph%/L .

Here k, and k; are empirical constants,

Equations [22, 25) or experimental relationships have been proposed
for the determination of the mixing length. For developed flow in a
channel of constant cross section Obukhov [28] gave relationships for
L which are satisfactory in many cases, In connection with the integral
diffusion method it is of interést to note that in [28] the treatment
involved an internal geometry in which the element was similar to the
"optical thickness" element ds/L in the integral diffusion method.
Since the probability of interaction does not depend on the geometric
coordinate, but on the value of T (0, s; L), which is different along
rays in different directions, then anisotropy appears in the integral
diffusion model, as in the internal geometry case.
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